
HELOS | RODOS & Co. | Laser Diffraction Particle Measurement | Laboratory Size and Distribution | < 0.1 μm to 8,750 μm

Technical Specifications

Modular Laser Diffraction Sensor for Particle Size Analysis

Sensor			
Label	HELOS/BR	HELOS/KR ¹	HELOS/KR-Vario ²
Overall measuring range	0.1 – 875 μm	0.1 – 8,750 μm	0.1 – 8,750 μm
Measuring range modules	5	8	8
Measuring principle			
Laser diffraction	Forward scatter	ing in parallel bea	m
	– classic optical	Fourier set up (IS	O 13320)
	– open measurii	ng zone offering u	nique
	working distar	nce	

Light source		
Helium-neon laser	$\lambda = 632.8 \text{ nm (red)}, P_c$	out ≤ 5 mW
Protection class	3R with open dispersi	ion units
	1 with closed dispersi	on units
Beam diameter	Automatic adjustmen	t to measuring range
	R1 / R2	2.2 mm
	R3 / R4(T) / R5(T)	13.0 mm
	R6T / R7T	26.0 mm
	R6T / R7T / R8T	35.0 mm

Measuring ranges and opti	cs				
Discrete measuring ranges	Discrete measuring ranges with highest precision and resolution ³ .				
		Focal length	Xmin, CLmin CLmax*-	X _{max}	
HELOS/BR	R1	(f=20 mm)	0.10 0.18 -	35.0 μm	
	R2	(f=50 mm)	0.25 0.45 -	87.5 μm	
	R3	(f=100 mm)	0.50 0.90 -	175.0 μm	
	R4T	(f=200 mm)	0.50 1.80 -	350.0 μm	
	R5T	(f=500 mm)	0.50 4.50 -	875.0 μm	
HELOS/KR	R1	(f=20 mm)	0.10 0.18 -	35.0 μm	
HELOS/KR-Vario	R2	(f=50 mm)	0.25 0.45 -	87.5 μm	
	R3	(f=100 mm)	0.50 0.90 -	175.0 μm	
	R4	(f=200 mm)	0.50 1.80 -	350.0 μm	
	R5	(f=500 mm)	0.50 4.50 -	875.0 μm	
	R6T	(f=1,000 mm)	0.50 9.00 -	1,750.0 μm	
	R7T	(f=2,000 mm)	0.50 18.00 -	3,500.0 µm	
	R8T	(f=5,000 mm)	0.50 45.00 -	8,750.0 μm	
	* Value	s indicate lower	upper limits of	first class.	
Typical measuring					
range combinations					
Triple lens holding disc	R2 R4	4 R6T	0.25 0.45 -	1,750.0 μm	
Quad lens holding disc	R1 R3	3 R5 R7T	0.10 0.18 -	3,500.0 µm	

tion			
31 semi-ci	rcular segment	ts (180°) for o	rientation-
independe	nt characterisa	ition of even i	rregular
shaped pa	rticles		
3 centre el	ements for pre	cise autofocu	s prior to
every mea	surement and	for continuou	s monitoring
of optical	concentration	during measu	rement
2,000 diffraction patterns per second			
in up to 248 intensities			
Distribution width Measuring time ⁴ Sample amount ⁴ Standard deviation ⁵			
narrow ⁶	< 10-100 ms	< 10-100 mg	< 1.0-1.5 %
normal ⁷	< 0.1-1 s	< 0.1-< 1 g	< 1.5 %
wide ⁸	< 1-10 s	< 1-10 g	< 2.0-2.5 %
narrow ⁶	1-3 s	< 0.1-2 g	< 1.0-1.5 %
normal ⁷	2-10 s	< 1-10 g	< 1.0-1.5 %
wide ⁸	5-30 s	< 10-100 g	< 1.5-2.0 %
If continuo	ous sample fee	ding is grante	d, sample
amount as well as measuring time is virtually			rtually
unlimited. In doing so, maximum standard			lard
deviation of three consecutive measurements			
always remains below 2.5 %.			
	31 semi-ci independe shaped pa 3 centre el every mea of optical de 2,000 diffrin up to 24 Distribution wid narrow ⁶ normal ⁷ wide ⁸ narrow ⁶ normal ⁷ wide ⁸ If continue amount as unlimited, deviation of	31 semi-circular segment independent characterists shaped particles 3 centre elements for pre every measurement and sof optical concentration 2,000 diffraction pattern in up to 248 intensities Distribution width Measuring time and some surface	31 semi-circular segments (180°) for or independent characterisation of even is shaped particles 3 centre elements for precise autofocule every measurement and for continuous of optical concentration during measu 2,000 diffraction patterns per second in up to 248 intensities Distribution width Measuring time ⁴ Sample amount ⁴ narrow ⁶ < 10-100 ms < 10-100 mg normal ⁷ < 0.1-1 s < 0.1-< 1 g wide ⁸ < 1-10 s < 1-10 g narrow ⁶ 1-3 s < 0.1-2 g normal ⁷ 2-10 s < 1-10 g wide ⁸ 5-30 s < 10-100 g If continuous sample feeding is grante amount as well as measuring time is viunlimited. In doing so, maximum stand deviation of three consecutive measuring

Evaluation modes	
FREE	<u>Fr</u> aunhofer <u>E</u> nhanced <u>E</u> valuation
	(Fraunhofer diffraction, parameter free)
MIEE ¹⁸	<u>Mi</u> e <u>E</u> xtended <u>E</u> valuation
	(Mie Scattering, deploying the complex
	refractive index)
Combination of	Automatic combination of up to 4 high-resolution
measuring ranges ¹⁸	measuring ranges capturing wide distributions
	$(ratio x_{90}/x_{10} > 1,000)^9$
	Calculation of an aggregated particle size distribu-
	tion with up to 57 size classes out of a maximum of
	124 independent observations.

Quality of measuring results			
Accuracy	σ < 1 %	mean relative standard deviation	
		to absolute value (x ₁₀ x ₉₀)	
Repeatability ¹⁰	$\sigma < 0.04 \%$	typical, wet measurement ¹¹	
	$\sigma < 0.3 \%$	typical, dry measurement ¹²	
Comparability ¹³	σ < 1 %	mean relative standard deviation	
		of median (x ₅₀)	
	$ \Delta x_{50} < 2.5 \%$	maximum relative deviation	
	$ \Delta x_{50} < 2.5 \%$	maximum relative deviation	

Adaptable Dispersion Units

for Powders, Granules, Aerosols, Sprays, Inhalants, Suspensions, Emulsions, Bubbles, Gels, ...

Dispersing Units and Feeder ¹⁴		
Dry ¹⁵		
	Dispersing range	Sample amount per analysis
RODOS	< 0.1 - 3,500 μm	< 1 mg - 1,000 g
Injection disperser for finest,		
even cohesive powders		
GRADIS	0.5 - 8,750 μm	10 - 1,000 g
Gravity disperser for coarser,		
even fragile particulate systems		
VIBRI ¹⁶	< 0.1 - 15,000 μm	1 mg - 1,000 g
vibratory feeder for precise dosing		
and feeding of dry particulate		
systems		
ASPIROS ¹⁶	< 0.1 - 875 μm	< 1 mg - 1 g
micro dosing system for feeding		
small amounts of precious or toxic		
dry substances in encapsulated		
sample vials ¹⁷		

Wet ¹⁸		
	Dispersing range	Analysis volume
SUCELL		
Closed loop flow-through cell for	0.1 - 1,750 μm	500 ml
suspensions and emulsions;		
built-in sonication (0-72 W);		
small volume adapter (SVA) ¹⁹		50 ml
QUIXEL	0.1 - 3,500 μm	300 - 1,000 ml
Closed loop flow-through cell for		
suspensions and emulsions, even with		
coarser, high density particles;		
built-in sonication (0-72 W);		
heatable ¹⁹		
CUVETTE		
Stationary cuvette for precious suspen-	0.25 - 3,500 μm	50 ml
sions and emulsions of small volume;		
external sonication (0-60 W) and		
magnetic stirrer;		
for smallest quantities with	0.1 - 87.5 μm	6 ml

Dry and wet		
OASIS		
Combines RODOS	< 0.1 - 3,500 μm	0.5 mg - 1,000 g
and SUCELL;	0.1 - 1,750 μm	500 ml
small volume adapter (SVA) ¹⁹		50 ml
VIBRI or ASPIROS		
for feeding of dry samples ¹⁶		

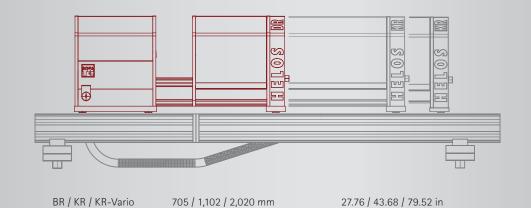
Sprays and initialatics		
SPRAYER	0.25 - 1,750 μm	1 dose
Actuator (force or trajectory) for spray		
cone analysis of MDIs and various sprays		
INHALER	0.25 - 1,750 μm	1 dose
Vacuum controlled adapter for aerosol		
analysis of DPIs, MDIs, nebulizers and		
various sprays;		
Venturi meter ¹⁹ , fine and coarse particle		
collectors ¹⁹ , pre-seperator ¹⁹		

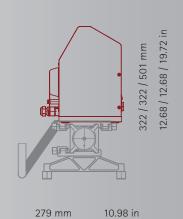
SUCELL

HELOS | R-Series | Laser Diffraction

The Modular Classic

Systems for Particle Size Analysis


Sensors | Dispersers | Evaluation | Quality


Quality assurance system		
Certification	Standardise	d test procedure
Reference material	SiC-F1200	$(x_{50} \approx 4.5 \ \mu m)$
	SiC-P600	$(x_{50} \approx 27 \ \mu m)$
	SiC-P80	$(x_{50} \approx 260 \ \mu m)$
	SiC-P50	$(x_{50} \approx 430 \ \mu m)$
Validation	according to	FDA regulations
Software		
PAQXOS	PC or remot	e control of application in terms of
Control and evaluation	sensor, dispe	ersing units and sample feeding
software for particle	Evaluation	
size analysis	- Fraunhofer Enhanced Evaluation (FREE)	
	– Mie Extended Evaluation (MIEE) ¹⁹	
	– mean valu	es and standard deviations
	– combination of measuring ranges ¹⁹	
	Presentation of results based on user defined	
	reports and	templates
	- diagrams (distribution curves, trend graphs)
	– tables	
	- characteri	stic values
	Step-by-ste	o wizard for quick and successful
	measuremer	nts
	Intuitive SOI	P management
	User-friendl	y, individual user interface

Compliance	
ISO 13320	The ISO standard requirements concerning
	"Particle size analysis – Laser diffraction methods"
	are met or even partially exceeded.
FDA 21 CFR Part 11	The compliance to FDA rule standards concerning
	electronic records and electronic signatures is
	provided.

System specification	ns			
		HELOS/BR	HELOS/KR	HELOS/KR-Vario
Dimensions (L/W/H) mm		705/279/322	1,102/279/322	2,020/279/501
Measuring zone	mm	123	123	123 to 1,400
				variable
Weight	kg	30	35	70
Supply voltage		90 - 250 V AC @ 50-60 Hz		
Power consumption		Standby	0.1 W	
		Laser mode	31 W	
		Ready	43 W	
Compressed air ²⁰		Supply	max. 6 bar ISO 8573-1 Class 3	
		Consumption	typical 200 l/mir	n max. 300 l/min
Extraction ²¹		Application dependent industrial extraction unit		

Computer specifications	
Operating system ²²	Microsoft® Windows® 10 Professional (64 Bit)
Hardware specification ²³	Up-to-date desktop PC,
	e.g., Intel® Core™ i7, min. 3.6 GHz, 8 GB RAM, 8 MB
	Cache, SSD PCle 512 GB, Intel® HD Graphics 630
	(integrated), DVD±RW
Display	27" Full HD (2,560 x 1,440 px)
Interfaces	Ethernet LAN connection (100 MBit/s)

Dimension sheet